±«Óãtv

 

Laurent Kreplak

Associate Professor, Department of Physics and Atmospheric Science, School of Biomedical Engineering

laurent 2

Contact

Laurent Kreplak, PhD
Email: kreplak@dal.ca
Phone: 902-494-8435
Web:

 

The main goal of my group is to unveil the design rules underlying the unique mechanical properties of protein assemblies within cells and tissues. We are interested in both bottom-up and top-down approaches. In the former, we aim to design peptides that can self-assemble into filamentous structures with predictable mechanical properties. In the latter we study the relationship between structure and mechanical properties for naturally occurring protein assemblies such as collagen fibrils.

Our Group

Our research projects are multidisciplinary in nature so we welcome trainees at all career stages with a wide variety of backgrounds from chemistry, biochemistry, physics and engineering.

Projects

Nanomechanical testing of collagen fibrils: We are developing atomic force microscopy based approaches to study damage mechanisms in single collagen fibrils.

Ìý

Selected Publications

In tendons, differing physiological requirements lead to functionally distinct nanostructures. Quigley AS, Bancelin S, Deska-Gauthier D, Légaré F, Kreplak L, Veres SP. Sci Rep. 2018 Mar 13;8(1):4409. doi: 10.1038/s41598-018-22741-8.
Unlocking Collagen Proteolysis with a Gentle Pull. Kreplak L, Rutenberg AD. Biophys J. 2018 Feb 6;114(3):503-504. doi: 10.1016/j.bpj.2017.11.3788.
Giant axonal neuropathy alters the structure of keratin intermediate filaments in human hair. Soomro A, Alsop RJ, Negishi A, Kreplak L, Fudge D, Kuczmarski ER, Goldman RD, Rheinstädter MC. J R Soc Interface. 2017 Apr;14(129). pii: 20170123. doi: 10.1098/rsif.2017.0123.
Bowstring Stretching and Quantitative Imaging of Single Collagen Fibrils via Atomic Force Microscopy. Quigley AS, Veres SP, Kreplak L. PLoS One. 2016 Sep 6;11(9):e0161951. doi: 10.1371/journal.pone.0161951. eCollection 2016.
Uniform spatial distribution of collagen fibril radii within tendon implies local activation of pC-collagen at individual fibrils. Rutenberg AD, Brown AI, Kreplak L. Phys Biol. 2016 Aug 25;13(4):046008. doi: 10.1088/1478-3975/13/4/046008.
Characterization via atomic force microscopy of discrete plasticity in collagen fibrils from mechanically overloaded tendons: Nano-scale structural changes mimic rope failure. Baldwin SJ, Kreplak L, Lee JM. J Mech Behav Biomed Mater. 2016 Jul;60:356-366. doi: 10.1016/j.jmbbm.2016.02.004. Epub 2016 Feb 10.
Quantitative phase measurements of tendon collagen fibres. Maciel D, Veres SP, Kreuzer HJ, Kreplak L. J Biophotonics. 2017 Jan;10(1):111-117. doi: 10.1002/jbio.201500263. Epub 2016 Jan 29.
Negishi, A., Armstrong, C. L., Kreplak, L., Rheinstadter, M. C., Lim, L., Gillis, T. E. & Fudge, D. S. The production of fibers and films from solubilized hagfish slime thread proteins. Biomacromolecules. 13(11):3475-82. 2012
Fortier, P., Suei, S. & Kreplak, L. Nanoscale strain-hardening of keratin fibres. PLoS One. 7(7): e41814. 2012
Gullekson, C., Lucas, L., Hewitt, K. & Kreplak, L. Surface-sensitive Raman spectroscopy of Collagen I fibrils. Biophysical Journal. 100:1837-45. 2011
Staple, D. B., Loparic, M., Kreuzer, H. J. & Kreplak, L.ÌýStretching, unfolding, and deforming protein filaments adsorbed at solid-liquid interfaces using the tip of an atomic force microscope. Phys Rev Lett 102: 128302. 2009